Design and Analysis of a Common Emitter PNP Amplifier
1. Problem Statement
We will design a Common Emitter PNP amplifier with the following specifications:
- Voltage gain ( A_V = -10 )
- Power supply ( V_{CC} = 12V )
- Collector current ( I_C = 2mA )
- Input impedance ( Z_{in} > 10kΩ )
- Load resistor ( R_L = 2kΩ )
2. Step-by-Step Design Process
Step 1: Choose Emitter Resistance ( R_E )
Using the small-signal model approximation:
$$ r_e = \frac{25mV}{I_E} $$
Since ( I_E \approx I_C = 2mA ):
$$ r_e = \frac{25mV}{2mA} = 12.5Ω $$
To improve stability, we choose ( R_E ) 10× larger:
$$ R_E = 10 \times r_e = 125Ω $$
Using the nearest standard value:
( R_E = 130Ω )
Step 2: Choose Collector Resistance ( R_C )
Voltage gain is:
$$ A_V = -\frac{R_C}{r_e + R_E} $$
Rearranging for ( R_C ):
$$ R_C = A_V \times (r_e + R_E) $$
$$ R_C = 10 \times (12.5Ω + 130Ω) = 1.42kΩ $$
Using the nearest standard value:
( R_C = 1.5kΩ )
Step 3: Set Base Voltage ( V_B )
For proper operation:
$$ V_B = V_E + V_{BE} $$
For a PNP transistor, ( V_{BE} = -0.7V ), and:
$$ V_E = -I_E R_E = - (2mA \times 130Ω) = -0.26V $$
Thus:
$$ V_B = -0.26V - 0.7V = -0.96V $$
Step 4: Choose Base Resistors ( R_1 ) and ( R_2 )
Using a voltage divider:
$$ V_B = V_{CC} \times \frac{R_2}{R_1 + R_2} $$
Rearrange for ( R_2 ):
$$ R_2 = \frac{V_B}{V_{CC}} \times (R_1 + R_2) $$
Choosing ( R_1 = 100kΩ ):
$$ R_2 = \frac{-0.96V}{12V} \times (100kΩ + R_2) $$
Approximating ( R_2 \approx 10kΩ ), we use:
( R_2 = 10kΩ )
3. AC Coupling and Bypass Capacitor Design
Input Coupling Capacitor ( C_{in} )
$$ C_{in} = \frac{1}{2\pi f_c Z_{in}} $$
For ( f_c = 100Hz ) and ( Z_{in} \approx 10kΩ ):
$$ C_{in} = \frac{1}{2\pi (100)(10kΩ)} \approx 0.16\mu F $$
Using the standard value:
( C_{in} = 0.22\mu F )
Output Coupling Capacitor ( C_{out} )
$$ C_{out} = \frac{1}{2\pi f_c R_L} $$
For ( R_L = 2kΩ ):
$$ C_{out} = \frac{1}{2\pi (100)(2kΩ)} \approx 0.8\mu F $$
Using the standard value:
( C_{out} = 1\mu F )
Bypass Capacitor ( C_E )
For maximum gain:
$$ C_E = \frac{1}{2\pi f_c R_E} $$
$$ C_E = \frac{1}{2\pi (100)(130Ω)} \approx 12.3\mu F $$
Using the standard value:
( C_E = 10\mu F )
4. Verify Design Performance
Voltage Gain ( A_V ):
$$ A_V = -\frac{R_C}{r_e + R_E} = -\frac{1.5kΩ}{12.5Ω + 130Ω} = -10.6 $$
Close to target ( -10 ).
Input Impedance ( Z_{in} ):
$$ Z_{in} = (\beta + 1)(r_e + R_E) $$
Assuming ( \beta = 100 ):
$$ Z_{in} = (100 + 1) \times (12.5Ω + 130Ω) = 14.3kΩ $$
Meets requirement ( >10kΩ ).
Output Impedance ( Z_{out} ):
$$ Z_{out} \approx R_C = 1.5kΩ $$
5. Final Component Values
Component | Value |
---|---|
( R_C ) | 1.5kΩ |
( R_E ) | 130Ω |
( R_1 ) | 100kΩ |
( R_2 ) | 10kΩ |
( C_{in} ) | 0.22μF |
( C_{out} ) | 1μF |
( C_E ) | 10μF |
6. Conclusion
- Determine amplifier requirements (gain, impedance, power supply).
- Set transistor biasing to ensure active region operation.
- Calculate resistors for gain and stability.
- Choose capacitors for AC coupling and frequency response.
- Verify performance through calculations.
Next Steps
- Simulate this circuit using SPICE/Multisim.
- Modify for different gain values.
- Compare with a Common Base or Common Collector design.
Want More?
Would you like:
- More worked examples?
- A guide for designing a Common Base or Common Collector amplifier?
- A practical SPICE simulation tutorial?
Let me know how you'd like to proceed! 😊